Model-Based Deep Reinforcement Learning with Traffic Inference for Traffic Signal Control

نویسندگان

چکیده

In the modern world, extremely rapid growth of traffic demand has become a major problem for urban development. Continuous optimization signal control systems is an important way to relieve pressure in cities. recent years, with impressive development deep reinforcement learning (DRL), some DRL approaches have started be applied control. Unlike traditional methods, agents trained using continuously receive feedback from environment improve policy. Since current research field more focused on performance agent, data efficiency during training ignored extent. However, tasks, cost trial and error very expensive. this paper, we propose approach based inference model. The proposed model future information given upstream intersections learn changing patterns order make inferences about changes environment. algorithm, interacts agent instead Through comprehensive experiments realistic datasets, demonstrate that our algorithm superior other algorithms terms its stronger performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using a Deep Reinforcement Learning Agent for Traffic Signal Control

Ensuring transportation systems are efficient is a priority for modern society. Technological advances have made it possible for transportation systems to collect large volumes of varied data on an unprecedented scale. We propose a traffic signal control system which takes advantage of this new, high quality data, with minimal abstraction compared to other proposed systems. We apply modern deep...

متن کامل

Reinforcement Learning For Adaptive Traffic Signal Control

By 2050, two-thirds of the world’s 9.6 billion people will live in urban areas [2]. In many cities, opportunities to expand urban road networks are limited, so existing roads will need to more efficiently accommodate higher volumes of traffic. Consequently, there is a pressing need for technologically viable, low-cost solutions that can work with existing infrastructure to help alleviate increa...

متن کامل

Deep Reinforcement Learning for Traffic Light Control in Vehicular Networks

Existing inefficient traffic light control causes numerous problems, such as long delay and waste of energy. To improve efficiency, taking real-time traffic information as an input and dynamically adjusting the traffic light duration accordingly is a must. In terms of how to dynamically adjust traffic signals’ duration, existing works either split the traffic signal into equal duration or extra...

متن کامل

Adaptive Traffic Signal Control: Deep Reinforcement Learning Algorithm with Experience Replay and Target Network

Adaptive traffic signal control, which adjusts traffic signal timing according to real-time traffic, has been shown to be an effective method to reduce traffic congestion. Available works on adaptive traffic signal control make responsive traffic signal control decisions based on human-crafted features (e.g. vehicle queue length). However, human-crafted features are abstractions of raw traffic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2023

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app13064010